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COMPUTERPROGRAMTO SIMULATE RAMANSCATTERING

By

Barbara Zilles I and Roscoe Carter 2

SUMMARY

A computer program is being developed to simulate the vibration-

rotation and pure rotational spectrum of a combustion system con-

sisting of various diatomic molecules and CO2 as a function

of temperature and number density. The main program for this

purpose has been developed along with the necessary subroutines to

generate two kinds of spectra--a pure rotational spectrum for any

mixture of diatomic and linear triatomic molecules, and a vibra-

tional spectrum for diatomic molecules. The program is designed

to accept independent rotational and vibrational temperatures for

each molecule, as well as number densities.

In the following section, the theory upon which the program is

based is described in detail. In the third section block diagrams

of the program are given. The different variables and functions are

identified and their relation to the theory and/or logical flow of

the computing format is explained. In the "results" section examples

of computed spectra are given along with a brief description of the

input parameters used to produce these spectra.

Research Staff, Old Dominion University Research Foundation,
Norfolk, Virginia 23508.

Assistant Professor of Chemical Sciences, Old Dominion University,

Norfolk, Virginia 23508.



THEORY

The power signal collected for a Raman transition from rotation-

vibration state Jv to J'v' is given by

RJ'v' = n VT_e
Jv YJv ) J'v'

do
d-_ Jv

(i)

where n = number density

YJv
= probability of finding a molecule in rotation-

vibration state Jv according to the Maxwell-

Boltzmann distribution law

V = irradiated volume

I = average intensity of irradiation in that volume

= efficiency of collecting optics

= scattering angle in steradians

d_h J'v' = differential Raman cross section for the transition.

d_/jv

Optical Factor

The problem of defining a volume in the sample which interacts

with the laser light and the average intensity within that volume

has been considered by Barrett and Adams (ref. i). They have

shown that for a laser beam focused to a diffraction limited point

by a lens of focal length equal to that of the collecting optics

a cylindrical volume may be defined

V = 2bAf ,

where Af is the area of the laser focal point and b is the

distance in both directions along the beam axis at which the

irradiance has dropped to i/e 2 its intial value. Af is

related to b by

(2)
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(3)b = 2Af/l_ I

where 1 is the wavelength of the laser line.

in this volume is found to be

The average intensity

A

I = u

Af

tan I (2)] I°
(4)

where

beam.

A is the area and I the irradiance of the unfocused laser
u o

Substituting equation (3) into equation (2) and combining

with equation (4) gives

AuA f
VI -

21 tan I (2) I I O

Nowt Af is related to Au by

Af = 412f2/A u

where f is the focal length of the focusing lens. Hence we have

V_ = 2lf2[tan-l(2)] I• o
(5)

The irradiance I is given by
o

I = P/A (6)
o u

where P is the laser power.

Frequency

The frequency associated with the transition giving rise to the

signal in equation (i) may be separated into rotational and vibra-

tional terms.



J'v' v' J'
= + _j_Jv _v

= [G(v')i- G(v)] + [Fv' (J')- Fv(J)]

(7)

where G and F are the vibrational and rotational energies,
v

respectively, of the states in question. The rotational energy

depends on the vibrational as well as the rotational quantum
numbers:

F (J) = B J (J + i) (8)v v

If B is the rotational constant of the ground vibrational state,o

B = B v (9)
v o 1 l

i

where _. is the vibration-rotation interaction constant and
1

is the vibrational quantum number for the ith normal mode of

vibration.

For the pure rotational spectrum, of course, v' = v and

_v' = 0. For vibrational spectra the transitions will involve
v

a change of quantum number for only one normal mode (that is,

combination bands will not be considered). Thus, dropping the

normal mode subscript for Av = v' - v and _, the rotational

part of the transition frequencies for the different branches of

the band are as given in table i. [Bv in the table, however,

still denotes a sum over normal modes as in equation (9)].

The vibrational energy relative to that of the ground state

is given by

G°(v)
i,

o o 1_. - x.. - --

1 ll 2 j#l

V,

1

o] oxij V i -_ _ x.. V. V.
1 j<i 13 1 ]

(i0)

4



Table I.

Branch

O

P

Q

R

S

J!

J-2

J-i

J

J+l

J+2

j, (a)

_j

1
-4Bv(J - z%-) - _(J - I)(J - 2)Av

-2B J - _J(J - l)Av
V

-_ J(J + l)Av

2B (J + i) - _(J + i)(J + 2)Av
v

4B (j + 3
v _) - e(J + 2)(J + 3)Av

(b)
S]%
jj,

3 (j2 _ ]%2) [ (j _ i) 2 _ ]%2]

2 J(J- i)(2J- i)(2J + i)

3]%2 (j2 _ j%2)

J(J + i)(J- i)(2J- I)

[J(J + i) - 3]%2 ) ] 2

J(J + i)(2J- i)(2J + 3)

3]%2[ (J + i) 2 _ ]%2]

J(J + i)(J + 2)(2J + i)

3 [ (J + i) 2 _ %2] [ (j + 2) 2 _ ]_2]

2 (J + i)(J + 2)(2J + i)(2J + 3)

(a)
From equations (7), (8) , and (9) .

(b)
From Placzek, reference 3.
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where o. is the harmonic frequency of the ith vibrational mode
1

and xg. the anharmonicity constant for the interaction of modes
13

i and j. For the band involving transitions of the kth normal

mode, therefore, the vibrational part of the transition frequency

is given by

V w O O
_0v (k) = _0k Av - Xkk (2v k + Av + 1)Av - /..,

igk

o 1

Xik (vl + 5 ) Av

!

where Av denotes the quantum number change, that is, Av = v k - v k-

For the fundamental band of a diatomic molecule, there is only one

normal mode and Av = i. Hence the above equation becomes

v w O= -- 2X ° (V + i) . (ii)
V

by

Boltzmann Factor

The population of the Jv rotation-vibration state is given

g -F (J)/kT r -G ° (v)/kTT ]YJv = j(2J + i) e e vj/ZrZOv
(12)

where gj is the nuclear degeneracy of the rotational state, T r

is the rotational temperature, and T is the vibrational tempera-
v

ture. F (J) and G°(v) are the rotational energy and the vibra-
V

tional energy relative to the zero point energy, respectively.

Z is the rotational partition function and Z° is the vibrational
r v

partition function relative to the zero point population. The

rotational partition function can be approximated by an integral

(see for example ref. 2, Appendix C) :

Z r =_ gj (2J + i) _e -(B° - aivi)J (J+l)/kTr
J i

(13)

1
_ kT (g+ + g-)/_ (Br . o

l

- _ivi)

6



where

odd J

+
g and

levels.

N

g are the nuclear degeneracies of the even and

Thus the partition function product is equal to

Z Z o = _I kT
r v 2 r

(g+ + g-) Z(T )
v

Z(Tv) =E
v

-G ° (v)/kT

gv e v

Bo -_ _ivi
i

(14)

where G°(v) is given by equation (i0) and gv is the vibrational

degeneracy--which equals 1 except for states (occurring in CO 2) where

a degenerate normal mode, k, is excited, gv = Vk + i.

Cross Section

The differential scattering cross section in equation (i) is

given by (ref. 3):

d /jv : l<J'v'l IJv>I2 (15)

_R is the scattered Raman frequency,

J'v'
= ! + (16)

_R 1 _Jv

J'v'

where 1 is the exciting wavelength and _Jv is the frequency

of the transition given by equation (7).

_J'v'l_IJv> is the matrix element of the polarizability tensor

for the initial and final vibration-rotation states in the labora-

tory-fixed system. In terms of the molecule-fixed coordinate system

the diagonal tensor element (scattered light polarized parallel to

the incident electric vector) is given by

= _.. cos (i,Z) ei_3 cos (j,Z) (17)_ZZ
13

7



For linear and symmetric top molecules, if e.. is broken down
±3

into a sum of spherical and traceless tensors (ref. 3)

I¢,v,l_zzl_v>l _ = ¢' I_lv>l _ 6jj,

+ _ I<v I_1_>12. ' Sjj,

(18)

where 6jj, is the Kronecker delta and Sjj, is the rotational

line strength. The parameters, _ and 8, referred to as the

polarizability and anisotropy, respectively, are two invariants

of the polarizability tensor

1 1
= _ tr _ = _ e_-

JJ
3

1 [3tr (_ _%)- (tr _)2]S=_

(19)

They are functions of the normal vibration coordinates Q and may

be developed in a power series

+ 0+(Q) = C_o 0

+ a_.) Q + . . .B(Q) = 8O o

Thus

I<v'l_lv>l _ = _6vv, + _'_ I<v + ZlQIv>l _ 6v,,v+z (20)

where the zero subscript has been dropped. For a diatomic molecule

the normal coordinate matrix element is given by



I< v + IIQIv>I2 = Nh(v + i)

81T 2C£00p

(21)

where N = Avogadro's number

h = Planck's constant

c = speed of light

o
= the harmonic frequency as in equations (i0) and (ii)

p = the reduced mass.

Similarly, the anisotropy for any molecule may be expanded

= + B'2 l<v+ llQlv>l2 6v,,v+ll<vl_]v>l2 _ 6vv, (22)

The first term in equation (22) when substituted into the second

term in equation (18) gives the pure rotational spectrum for parallel

polarization. The first term in equation (20) gives the contribution

to the Rayleigh scattering.

The second terms in equations (20) and (22) determine the

vibrational spectrum. For perpendicular polarization the off-

diagonal polarizability tensor element @YZ in the laboratory

system is considered using a transformation analogous to equation

(17). For linear and symmetric top molecules,

lCv l_yzlJv>]2 3- 45 ]_'IBlv>12sjj, . (23)

Thus for vibrational spectra we can define trace and anisotropic

scattering cross sections:

 Lace 4d )i3 d_ = l<v'_Iv>l2 6jj, (24)

do) _ 45 do)= i<v,]B]v>l 2 (25)anis 3 _ Sjj,



where the parallel and perpendicular cross sections are determined

by whether the component of _ in equation (15) is ZZ or YZ,

respectively.

For the diatomic molecules in this study, the parallel scattering

contains significant contributions from the anisotropic as well as

the trace cross sections. For polyatomic molecules _' - _-_
_Qi1 /

o

depends on the normal coordinate being considered. It is always

greatest for the totally symmetric vibration. For spherical top

molecules, B i = 0 for the strong totally symmetric vibration

and thus only the trace scattering need be calculated.

For asymmetric top molecules the anisotropic scattering does

not assume such a simple form as equation (25). However, for H20 ,

the asymmetric top considered in this study, the anisotropic scatter-

ing is weak compared to the trace scattering and does not contribute

to the appearance of the spectrum [the depolarization ratio = -_.I]/IJJ

is 0.02 (ref. 4)]. The experimental trace scattering may be deter-

mined quantitatively since the relation in equation (24) still

applies. Hence for H20 , only the trace scattering will be calculated.

The rotational line strength factors Sjj, are determined by

the matrix elements of the direction cosines as seen from equations

(17) and (18). They determine the rotational selection rules. For

pure rotational spectra the selection rules are

AJ = J' - J = ±2 (26)

for the diatomic molecules. Since the antistokes scattering (AJ = -2)

is symmetrical to the stokes scattering (AJ = +2), except for the _

factor in equation (15) and the Boltzmann factor, it gives no new

information and is not calculated.

For the triatomic linear CO 2 molecule, those states where the

doubly degenerate bending mode, _3, is excited, can have non-zero

vibrational angular momentum quantized along the figure axis. This

angular momentum vector contributes to the direction cosine matrix

i0



elements in the same way as the quantized component of the rotational

angular momentum for a symmetric top. Thus for states with a non-zero

vibrational angular momentum quantum number _ the line strengths

depend on _ as well as J and J' and we have the selection
rules

AJ = +i for _ _ 0 (27)

in addition to equation (26).

For CO 2 states with v 3 _ 0, there are v 3 + 1 states with

the same energy. When v 3 is odd all the states have i _ 0 and

there are two states each with lil = i, 3, 5,...v 3. When v 3 is

even there is one state with _ = 0 and two states each with

I_I = 2, 4, 6_...v 3. For the pairs of states w_th the same

a given J level of only one of the states is occupied for C02,

since one state is symmetric with respect to interchange of the

identical oxygen nuclei and one state is antisymmetric. Since

oxygen has zero nuclear spin, only the even J levels are occupied

for symmetric states and only the odd J levels for antisymmetric

states. States with _ = 0 are symmetric.

In addition to different nuclear degeneracies, states with

different _ have different line strength factors so that Sjj'

in equation (18) is given by

value,

Sjj, =_-_ gj Sjj, • (28)
?

The Sjj, are given in table 1 for AJ = 0, ±i, ±2; they reduce to

the line strength factors for diatomic molecules when _ = 0. For

rotational spectra J' = J + i, J + 2; for vibrational spectra all

five branches are calculated.

Units and Summary

jWvl

In equation (i) Rjv is in watts, since

n is in cm "3 and the cross section is in cm 2.

sity in photons/sec by dividing by

VI is in watt-cm,

We may obtain inten-

ii



1 photon at frequency _R = hC_R watt-sec

where h is in joule-sec,

equation (16).

c is in cm/sec, and _R is given by

In summary then, for rotational spectra the signal in counts/sec

is

-F (J) kT -G ° (v)/kT
J'v' _ Cn r v

Rjv Z _R gj(2J + l)e e (Sjj,) (29)

o

where Z = ZrZv/k_ and

B

C = 24_ _ _5 B2 vinekhc
(30)

For vibrational spectra of diatomic molecules the 0 and S branch

signals are

-G ° (v) kT <S ,)

J'v' _ C'n A(v + i) -F(J)/kTr v

Rjv Z _R o gj(2J + l)e e jj

(31)

where

replaced by 8'.

The signal for the vibrational Q

(31) except that Sjj, is replaced by

A = Nh/8_2c and C' is the same as C except that 8 is

branch is the same as equation

11.25 e'2/8'2 + Sjj .

PROGRAMMING

The computer program consists of a main program to take care

of the major input/output operations, calculate general constants

and manage the general flow of operations; a subroutine, PART, to

calculate the partition functions; a subroutine, LINES, to generate

the corresponding frequency and intensity arrays; a subroutine, CNVLUT,

12



to convolute with the line shape function; a subroutine, SLIT, to

convolute with the slit function; and a subroutine, SPKPLT, to plot

the resulting spectrum.

The program is set up so that for a given run only a given type
of spectra may be computed. The alternatives are:

i. a set of pure rotational spectra for any combination of
diatomic or linear triatomic molecules,

2. a set of vibrational spectra for diatomic molecules,

3. a set of vibrational spectra for CO2,

4. a set of Vibrational spectra for H20,

5. a set of vibrational spectra for CH_.

Thus a different LINES subroutine is placed in the card deck according

to the desired option. At present the LINES subroutine has been

completed only for the first two options.

Main Program

A flow chart of the main program is shown in figure i. The

input parameters and the constants calculated in the main program
are as follows:

Instrument parameters. I, exciting wavelength in A; P, laser

power in watts; Ai, area of unfocused laser beam in cm2; _,
collecting angle in steradians; f, focal length of focusing lens

in cm; e, total efficiency.

Optical factor. F = 2_an -I (2)] x 10 -8 f2_Ps/A_. See
equation (5).

Spectrum parameters. DX, plotting increment in cm-l; A_,

halfwidth of the line shape function in cm-l; RLIM, limit of

intensity in counts/sec, below which R for a given line is set

equal to zero; SLT, spectral halfwidth of the slit in cm-l;

ALNGTH, length of the plotted spectrum in inches; NSTRT, fre-

quency in cm-I at which spectrum begins; IEND, frequency in cm-I

at which spectrum ends.

13



<_ YES

YES

• IINPUT Instrument

Parameters

I

calc optical factor I

I
!

= 0 [MOL

l

INPUT Spectrum IParameters

calc NPT

I

MOL = MOL + 1

l

I
INPUT molecular

consts. Tr,Tv,n

DO i = I,NQ

l

I0arameersl
l

[ calc _!1

©

2,3

©

CALL PART

I

calc const., D

l

CALL LINES

l

CALL CNVLUT

i

MOL = MOL - 1

I

INPUT BKGRD

I

DO N = 1,NPT

I
Y(N) = Y(N) +

BKGRD(N)

CALL SLIT

I

CALL SPKPLT

1,4

Figure i. Flow chart for main program. 14



NPT is the number of plotting points.

DX + i.

NPT = (NSTRT - IEND) /

Molecular constants. B o, ground state rotational constant in

cm-l; B or B', anisotropy in cm 8 for pure rotational spectra or

anisotropy derivative in cm z for vibrational spectra; ATB, (_,/_,)2

zero for a pure rotational spectrum; _, reduced mass--zero for a

pure rotational spectrum; NQ, number of normal coordinates--must

be 1 or 3; g+ and g-, nuclear degeneracy of positive and nega-

tive J levels, respectively; NJ, maximum J quantum number;

SPECIE, name of molecule.

T = rotational temperature; T = vibrational temperature;
r v

n = number density in molecules/cm 8.

O

Normal mode, Q, parameters. _ (Qi) , harmonic vibration

frequency in cm-l; x°(Qi ) , anharmonicity constant in cm-l; _(Qi ) ,

rotation-vibration interaction constant in cm'l; NS(Q i) = +i or -i,

symmetry of normal coordinate with respect to reflection through a

plane containing the figure axis. If the symmetry of the vibra-

tional wave function is negative, the nuclear degeneracies of the

odd and even J levels are interchanged. This symmetry is given by

Vo

= _NS (Qi) i
ns i

(32)

NVM(i), maximum v quantum number for the ith vibrational mode.

_ is a factor used in the PART and LINES subroutines,
1

O O
e I = _ - X . (33)

1 1 ii

D = 24_ 4 4 B2nF
45 khc Z " (34)

See equations (29) and (30).

The index L in the main program serves to manage the generation

and convolution of the different branches of a vibrational spectrum.

In the rotational LINES subroutine the R branch, if allowed, is

15



calculated simultaneously with the S branch; hence it sets L to

zero so that at the L flag in the main program the flow will be

recycled to begin generation of lines for another molecule if

desired or to plot the spectrum.

Similarly, if only the trace scattering of the vibrational

spectrum is to be generated for H20 (because the anisotropic

scattering is impracticable) or for CH_ (because the anisotropy
is zero), L will be set to zero in the LINES subroutine and only

the Q branch will be generated. For vibrational spectra in which

the anisotropic as well as trace scattering is to be computed,

L = i, 2, 3 correspond to the O, Q, and S branches, respectively.

The index MOL is introduced primarily for the case of the

pure rotational spectrum where the scattering from several molecules

appears in the same spectral region. It serves to index the specie

concentrations and temperatures for labeling of the plotted spectrum.

The addition of the background, BKGRD, to the array of spectral

ordinates, Y, has not yet been implemented as this data is not

available. It is presently assumed that the data will be decon-

voluted and hence the background is added between the line shape

and slit function convolutions.

PART Subroutine

The subroutine PART calculates Z, the rotational times the

vibrational partition function divided by the Boltzmann constant k.

A flow chart of this subroutine is given in figure 2. The variables

calculated are as follows:

num= numerator of Z(T v) without

num =_ e

i

1 _ x ° vi/k T-(_i ii vi) v

gv [see equation (14)]

(35)

16



set NZTV (I)

1

z (Tv) = O.

i

DO O,NZTV (i)

_--_ DO O,NZTV(2)

DO O,NZTV(3)

initialize num,den]

I
l

DO 1 ,NQ I

I

I

calc num,den i

i

calc Z (Tv)

i

calc Z

1

RETURN

Figure 2. Flow chart for subroutine PART.

17



as in equation (i0) where it is assumed that

and e I is given by equation (33).
3

o
x . = 0 for i _ j,
13

den = denominator of Z (Tv) den = B -_ _ v.
o i l ±

Z(T v) =_ den(v)
v

num(v) (v 3 + i)

Z Z O
r v (g+ + g )

Z - k - T Z (Tv)r 2

The sums and products in this function are performed numerically.

Theoretically the sum over vibrational levels is infinite. In prac-

tice NVM(I), the maximum v quantum number, is input so that

the population of this level is less than 10 -6 that of the ground

state. NZTV(I) is then set equal to NVM(I) +3 and higher con-

tributions to the sum should be negligible. If there is only one

normal coordinate (diatomic case) NZTV(2) = NZTV(3) = 0.

Rotational LINES Subroutine

The rotational LINES subroutine calculates the frequencies and

intensities of the spectral lines for the R (CO 2) and S branches

according to equation (29) and table i. A flow chart of this sub-

routine appears in figure 3. Its rather complicated appearance is

due to the accomodation of linear triatomic molecules with their

three degrees of vibrational freedom and non-zero vibrational

angular momentum. The loops over quantum numbers for thedifferent

vibrational modes are nested in order of decreasing frequency

el > _2 > _3- The loop over J is nested within the loops over

v, and the loops for summing over the degenerate vibrational

substates (i quantum number) as in equation (28) are nested

within the J loop. The parameters and functions calculated

are as follows.

18



I

DO_vl = 0,NVM(1)
I

IDOl7 V 2 = 0,NVM(2) _

i

I

Ilnitialize Bv,ns,E ]

I

DO I = I,NQ

lca_C_v,n ] ca c i 'ns 1
IN'TOT: NWOT*_1

I

I

. o.0i

YES

[

I

[ NVM(3' = 0 l
IV

I

I DO_J = 0,NJ

I

R(NVTOT,J) = 0,NJ 1

I

[ + ]gj =g

I

r--_---_ _T >
I o

q

.... --]gj = g + g-

rotational

for S branch

@ V ca]c R

[ for S branch

NVTOT = NVTOT + i

i
1

RS(NVTOT,S) = 0 ]

I

calc _tS ]
for R branch

I
calc R

for R branch

I

I

_VTOT = NVTOT-_

I

Q I CONTINUE ]

TRUE _T

I NVTOT = NVTOT + i I

CONTINUE©I
©I
©1

I

I

I

CONTINUE ]

]
]
I
]

CONTINUE

I

L= 0

I

OMF = -20

I

RETURN

LINES subroutine.
Figure 3. Flow chart for 19



NVTOT is the index of vibrational states for all the different
J+2,v

Vl, v2, v 3 and also for the R and S branches. Thus if _Jv
J+l,v is given by _(NVTOT+I,J). Thusis given by _(NVTOT,J), _Jv

NVTOT must be decremented for each cycle over J if v 3 _ 0 and

must be re-incremented before initiating a new cycle over v 3.

B is given by equation (9) and n is given by equation (32).v s

E is the exponent in the vibrational part of the Boltzmann

factor [see equation (35)],

E °.v.)v.
j<i 33 3 3

V 3 ,

V 2 •

If the above sum exceeds 13 for a given v3, then any states with

the same Vl,V 2 values will have even higher populations for higher

so control is transferred out of the v 3 loop; similarly for

For v I control is transferred to the end of its loop.

_o = 1 for v 3 odd; _o = 0 for v 3 even as in the discussion

following equation (27).

T is a logical variable, tested for calculating R branches

and processing NVTOT.

+

gj is the nuclear degeneracy set equal to g or g according

to whether the vibration-rotation product wavefunction is symmetric

or antisymmetric. After the contribution to R for the _ = 0 state
+

for a given v 3 has been calculated, gj is set equal to g + g

since _ _ o states occur in pairs as discussed following equation (27).

BF is the Boltzmann factor without gj

which cancels with that in the denominator of

S branches (see table i).

and the (2J+l) factor

for the R and
Sjj,

(J.LT.i) is a logical variable which if true transfers control

to the end of the J loop, since J is the total angular momentum

quantum number and states with J < _ cannot exist.

j'

Sjj,_j and are as given in table 1 with Av = 0, except that

the (2J+l) factor in the denominator of S _ has been cancelled out.
jj'
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R is given by equation (29) using the factors which have
been calculated:

R(NVTOT,J) =E D _ OJ(NVTOT,J) g (BF)Sjj,

where D was calculated in the main program according to equation (34).

Vibrational LINES Subroutine

The vibrational LINES subroutine calculates the frequency and

intensity of t_e spectral lines for the O, Q, and S branches

of a diatomic molecule according to equation (31). The flow chart

is given in figure 4. It follows the same general form as the
rotational routine without the sums and products over multiple

vibrational coordinates and allowing for the difference in formulas.

The variables calculated are as follows.

DD is the constant factor D in equation (34) weighted by

the normal coordinate matrix element, as given by equation (21),

without the (v+l) factor.

is the vibrational part of the transition frequency for

_F = _I _ x° according to equations (ii) and (33).

IEX

IEX = -i

is a factor used in calculating c 2 (see below),

for L = i; IEX = 1 for L = 3.

is the coefficient for the J independent terms in theCl

frequency formulas for the 0 and S branches, c I = B v a.

is the vibrational part of the transition frequency,
v

_v = _F - 2x° v.

includes the J independent terms from the rotational
c

part of the transition frequency, _ = _ + 2clL .
c v

c 2 is the coefficient of the frequency terms linear in J,

c 2 = 4ci (IEX) - _ .

H is the DD factor weighted by (v+l)--see above.
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]
NVTOT = 0

i

I

talc DD I

I

I calc _F 1

I calc IEX I

l Do_Tv = 0,NvM

I

J NVTOT = NVTOT + 1

I

I calc B v

I

calc C I 1

I
talc

v

,[

I calc _c

I
calc C 2

I

[ calc g

I = 0 NJ
DO_TJ

I

f NO _
gj = g-

t -I

I calc S for O branch

calc S for

S branch

calc _,R for O

and S branches

G I CONTINUE

I

Q CONTINUE

I

RETURN

calc _,S,R

for Q branch

Figure 4. Flow chart for vibrational LINES subroutine.
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j l!

(J.LT.2) is a logical variable tested to eliminate negative

values for the 0 branch (J' = J + 2).

gj and BF are the same as in the rotational subroutine.

j,
_j and Sjj, are as given in table i, with _ = 0 and Av = i,

= _ + c2 J _ _j2 for the 0 and S branches. And _ = _ -
c v

_J(J+l) for the Q branch. The (2J+l) factor in denominator of

Sjj, for the O and S branches has been cancelled out with

that in BF as in the rotational subroutine.

R is given by equation (31) using the factors which have been

calculated. Thus for the 0 and S branches,

3

/ gj (BF) Sjj, .

And for the Q branch,

R(NVTOT,J) = H(2J+I) - _(NVTOT,J) gj(BF) (11.25 ATB + Sjj).

where ATB = (_'/8') 2.

CNVLUT Subroutine

The CNVLUT subroutine calculates the ordinates Y(N) of the

spectrum by convoluting over the generated lines with a Lorentzian

line shape function. The flow chart is given in figure 5.

(MOL.EQ.I) and (L.GE.2) are flags which insure that the

cumulated data are saved from a previous molecule (pure rotational

spectra) or from previously convoluted branches (vibrational spectra).

Otherwise the array of ordinates, Y(N), is initialized to zero.

YMAX saves the maximum ordinate value for scaling the spectrum

before plotting and labeling it.

X is the abscissa in cm -I.

(J.LT.2) has the same function as in the vibrational LINES

subroutine.
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NO

YES

iNO

DO N = I,NPT

Y(N) =--------_

YMAX = 0

X = NSTRT

DOWN = I,NPT

DO_v = I,NVTOT

l ooV_=0N_

I NO .

I I

YES

I

C = -C

YES

YES

calc Y (N)

I

I CONTINUE

I

1 CONTINUE

YES

NO

NO

IYES

YMAX = Y (N)

© X = X + DX

RETURN

Figure 5. Flow chart for subroutine CNVLUT.
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The Y(N) values for each point are calculated according to

Y(N)=ZZ
v J

R(v,J) (Am) 2

(Am) 2 + [m (v, J) - X] 2

The C and RLIM flags are to eliminate unnecessary calcu-

lations in this time-consuming routine, C = X - _(v,J). If

ICI > 45 the contribution of R(v,J) to Y(N) is neglected.

If _(v,J) < X (C > 0), the program skips over J values until

is brought within the range of 45 cm -I from X, since

increases with increasing J values. If _(v,J) > X (C < 0),

then once ICI > 45 cm -I no higher J values will bring it into

this range so control is transferred outside the J loop to the

next v -- m(v,J) decreases with increasing v. Actually for

the 0 and Q branches _ decreases with increasing J (see

table i). The (L.EQ.I) or (L.EQ.2) flag, therefore, sets

C = -C so that the C flags will have the same effect for

the 0 and Q branches as for the R and S branches.

The (X - _F ) flag allows for truncating the Q branch of

a vibrational spectrum so that the structure of the rotational wings

can be observed. Thus an ordinate is not considered maximum unless

it is i0 or more cm -I from the v = 0 line (_F) of the Q branch.

In the rotational LINES Subroutine _F is set equal to -20 so

that (X - eF ) will never be less than i0.

SLIT and SPKPLT Subroutines

The SLIT subroutine is set up analogous to CNVLUT except that

the convolution function is triangular rather than Lorentzian and

the sum is over the data points generated by CNVLUT rather than the

quantum numbers. It also generates and stores an array of abscissa

values, X(N), corresponding to Y(N). At present there seems to

be something wrong with this subroutine as the program has never
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completed a run since it was added. The DEC-10 computer throws the

job off the system without leaving a LOG:FILE or any record of the

job having been logged on.

The SPKPLT subroutine generates a PLOT:FILE from the ordinate

and abscissa arrays. It consists primarily of subroutine calls

which are specific to the DEC-10 system. This subroutine is

currently being rewritten for use on the CDC-6000 computer and

is not given here.

RESULTS

Examples of computed spectra appear in figures 6 through 14.

For all these spectra the same instrument parameters were used.

They are:

exciting line

laser power

area of unfocused

O

= 4880 A

= 0.5 watts

laser beam = 0.0128 cm 2

collecting angle

focal length

efficiency

= 0.05 steradians

= 50 cm

= .i0

The convolution over the triangular slit function was not per-

formed for these spectra. Only a single convolution with the

Lorentzian line shape was performed, but the halfwidth used was

typical of (the lower limit of) spectral slitwidths, that is,

0.5 cm-l--whereas natural line widths would be on the order of

0.01 to 0.i cm -I. A typical plotting increment was .2 cm -I.

RLIM was chosen as 1 x 10 -6 for the vibrational spectra and

1 x 10 -3 for the pure rotational spectra.

The molecular parameters used in the computed spectra are

given in table 2 and the normal coordinate parameters in table 3.

The B o, _, _, and x°l± values were derived from analysis of
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Figure 9. Vibrational Raman spectrum of N 2 at 298 °K.
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Table 2

N2

02

CO 2

B cm -I
o

2.00065 a

1.43776 a

.39021 c

8,10-2kcm 3b

.950

1.18

2.44

8' 10-16cm2b
I

2.16

2.34

ATB b g+

.546 6

.357 0

1

m

g

3

1

0

a
Reference 5.

b
Reference 6.

c Reference 7.

N2

02

C02 (QI) c

C02 (Q2) c

c
C02 (Q3)

o
60.
1

2359.61 a

1580.36 a

2349.16 b

1388.17 b

667.4 b

Table 3

o
X • •

ll

14.456 a

12.073 a

1

.0187 a

.01579 a

.00309 d

.00121 d

-.0072 d

NS
1

1

1

-i

1

1

a

c

d

Reference 5.
b

Reference 8.

The numbering of normal coordinates is that used in

£he program--_ 1 > _2 > _3 --and does not correspond

to standard nnmbering.

Reference 7.
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infrared spectra (refs. 5, 7). CO2 anharmonicities were not used

for the spectra given here; however, these data are available
and should be used.

B was derived from measurements of the depolarization ratio

of the Rayleigh band (including rotational wings) combined with
calculated from refractive index measurements (ref. 6). ATB was

derived from the depolarization ratio of the Raman vibration-rotation

band, and 8' was derived from the latter combined with the inten-

sity ratio of the Raman to Rayleigh bands (ref. 6).

NVM and NJ, the maximum v and J quantum numbers, are

given in table 4. They have been chosen to correspond to the level

whose population is less than 10-6 that of the most populated level,

for the given temperature.

Table 4.

N2

O2

a
coe (QI)

a
CO2 (Q2)

a
CO2 (Q3)

NVM NJ

298 ° 600 ° i000 ° 298 ° 600 ° 1000 °

2 3 5 40 58 76

2 4 7

2 3 4

2 4 7

5 i0 18

49 69 89

I

i! 92

q
132 170

a
The numbering of normal coordinates is that used in the program--

_I > e2 > _3 --and does not correspond to standard numbering.
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APPENDIX

SPECIAL PROBLEM - CO 2

INTRODUCTION

A subroutine and data set has been developed to generate the

frequencies and intensities of Raman scattering lines of CO 2 in

the 1300 cm -I region. This is to be incorporated into the general

program for simulating the Raman spectrum of a combustion system

as a function of temperature and number density, described

earlier.

The trace scattering contains the predominant features of the

vibrational spectrum, since the depolarization ratio, p, is .027

(ref. 2) for CO 2, where

p

3I
anis

45Itr + 4Ianis

Itr and Ianis are the trace and anisotropic scattering intensity,

respectively. The trace cross-section for a transition from initial

state, Ji, to final state, Jm, is given by

Ji,Jm
%

d_/ = (2_R) 4d-_ trace

2

I<Uml _lui> I (A-l)
YJi

where u. and u are the vibrational wave functions of the initial
1 m

and final states, and the other quantities are as defined earlier.
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The vibrational energy levels, and hence frequencies, of CO2

are not reproduced by the harmonic oscillator formulae given pre-

viously, due to Fermi resonance between _I and 2_2. It is
first necessary therefore to determine the eigenvalues and eigen-

functions of the perturbed Hamiltonian matrix. The unperturbed

energy levels and the perturbation terms are calculated using param-

eters from detailed analysis of infrared spectra (refs. _ and 13 to

18). The resulting matrix is then diagonalized. In order to insure
correct interpretation of the parameters, the energy eigenvalues,

first obtained only for the nonrotating molecule, were compared

to the calculated and the observed infrared values for 30 levels

ranging from 667 to 7603 cm-I.

Two programs were used to perform the calculation: UNPERT,

which generates the unperturbed frequencies and quantum numbers,
and PERT, which reads the data from UNPERT, sets up and diagonalizes

the energy matrix and outputs the energy eigenvalues. PERT was
then converted to ia LINES subroutine analogous to the rotational

and diatomic vibrational LINES subroutines described before.

This involved setting up the necessary data in terms of common

blocks and arguments consistent with the basic program, solving

the energy matrix for eigenvectors as well as eigenvalues, using

the former to generate the cross-sections and the differences
between the latter to generate the frequencies of the vibrational

transitions. At the end of the subroutine the frequency and cross-

section arrays are reordered according to increasing frequency
in order to be consistent'with the C parameter in the CNVLUT

subroutine.

Pure vibrational spectra were produced which did not include

the dependence of the Fermi coupling terms on the rotational quantum
number, J, nor a set of rotational lines for each vibrational

transition, which forms the envelope of the vibrational band. A

rough simulation of the band envelope was provided by giving a

broad (3 cm-I) Lorentzian lineshape to each vibrational transition.

The programs have subsequently been modified to include the
rotational structure as follows: the unperturbed values of the
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rotational constants, Bv, were generated as a function of the
vibrational quantum numbers, according to equation (9), along
with the E° in program UNPERT. A loop and branch condition

v
were added to the LINES subroutine to provide for explicit

calculation of the rotational lines. This involved addition

of the J dependence to the Fermi coupling terms and calcula-

tion of the perturbed Bv values by averaging over the eigen-
vectors. These B values are used to obtain the rotationalv
contribution to the energy, which determines the rotational

Boltzmann factor, and to obtain the rotational part of the

frequency according to equations (7) and (8).

It is desirable to test the program at a rotational and vibra-

ti0nal temperature of 15650K, since an experimental spectrum at this

temperature has been published (ref. i0). However, there are approx-
imately 280 vibrational levels occupied at this temperature, each

containing up to 145 rotational levels. Since it is not possible
to load a two-dimensional array containing this many elements, the

program was modified to provide for convolution over the line shape
function after the lines for each set of vibrational levels for a

given J value (i.e., rotational state) were generated. In this
manner all the data is stored in the array of ordinate points

(Y array as described earlier), and the same frequency and

intensity arrays are reused for each J value,_ This is accom-

plished by calling the CNVLUT subroutine from within the loop
over J, which is the outer loop in the LINES subroutine. When
J = NJ - 1 (NJ is the maximum value of J), control is transferred

to the main program where the final call to subroutine CNVLUT is
made. Convolution is then performed over the slit function, and

the data is sent to subroutine SPKPLOT to produce a plotted spectrum.

At present the unperturbed energy levels as calculated by an

independent program are read in by this LINES subroutine.
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THEORY

Energy

The expression for theunperturbed vibrational energies is

essentially the same as that used before [see eq. (I0) in main

text], except that the anharmonicity constants are the negative
of those defined previously, and it is expressed more simply in

terms of the anharmonic frequencies:

G°(Vl, v 2, v3) =
3

_k Vk
k=l

3 k

+ _ _ Xjk v. vk + g22 Z2
k=l j=l 3

(A-2)

The _k are related to the harmonic frequencies _{ by

1 _ Xjk d._k = _k + Xkk dkk + 2 j_k 3

where the dk are the degeneracies of the kth normal coordinate,
i.e., d 2 = 2, d I = d 3 = i. The term in _2 in equation (A-2) was

omitted in reference i, and the degeneracy of Q2 was not taken

into account.

The theory for the effect of Fermi resonance on the energies

calculated by equation (A-2) is essentially that of perturbation

theory. Taylor, Benedict, and Strong (ref. 13) showed that the

energy levels obtained from infrared spectra could not be fitted

unless the Fermi coupling parameters were allowed to vary in a

certain way with v I, v2, and v 3. Amat and Goldsmith (ref. 20)

showed that the variation determined empirically by Taylor et al.

is that given by perturbation theory when third-order terms in the

transformed Hamiltonian are included. Amat _t al._showed that the

only nonvanishing matrix elements for this perturbation Hamiltonian
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are the off-diagonal elements, <Vl, v2, Z, v31H'Iv I - i, v 2

+ 2, £, v3> , which are also the only nonvanishing elements for
the second-order case. Maes (ref 21) determined the sum of these

second- and third-order elements as a function of the quantum num-

bers to be

Q[ (v 2 + 2) 2 _ ]_2]V 1 [ k122

2 L /2

+ 1 1Vl

+ 12(v 2 + 2) + 13(v 3 + })].

(A-3)

Although coupling terms exist only between two unperturbed

states at a time, any number of states can interact simultaneously.

Symmetry requires that all interacting states have the same Z and

v 3 values. The angular momentum quantum number, _, must be _ v 2

and takes on alternate integer values, being even or odd in accord-

ance with v 2 .

II

The sets of interacting states, or "polyads, are shown system-

atically for up to v 2 = i0 for v 3 = 0 in table i. It is seen that

for each value of

given by

n = i, 2, 3,...

v 2 there is one polyad each whose degree n is

v2 - ,%o
+ 1

2

k

where _0 is the minimum value of Z:

Z 0 = 0 for V 2 even;

Z 0 = 1 for v 2 odd.

Referring to the right side of table AI, it can also be seen that

for each degree n there is one polyad of that degree for every

value; Z = 0, i, 2,...,Imax, where
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Table AI. Organization of polyads in terms of
unperturbed states (v I, v2, _, v3).

I 2 3 4

000

0110

02°0

0220

0310

0330

04°0

0420

0440

i00

III0

1200

1220

0510

0530

0550

1310

1330

6 0600

0620

0640

0660

7 0710

0730

0750

0770

8 08O0

1400

1420

1440

1510

1530

1550

1600

0820

0840

0860

0880

9 0910

0930

0950

1620

1640

1660

1710

'.1730

:;1750

0970

0990

i0 010°0

01020

01040

01060

01080

010100

1770

1800

1820

1840

1860

1880

200

5 6 _., n

2110

22°0

2220

23 "0

23 _0

24°0

2420

2440

2510

2530

2550

2600

2620

2640

2660

300

i

3110

3200 400

3220

3310 4110

3330

I

3400 4200

3420 4220

3440

0 1

1 1

,?

0 2

2 1

1 2

3 1

0 3

2 2

4 1

1 3

3 2

5 1

0 4

2 3

4 2

6 1

1 4.

3 3

5 2

7 1

0 5

2 4

4 3

6 2

8 1

1 5

3 4

5 3

7 2

9 1

500 0 6

2 5

4 4

6 3

8 2

i0 1
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(n) = vmax - 2(n - i) .max

Within a given polyad, if we consider the levels as given in

the table from left to right, i.e., starting with v I = 0 and

increasing it consecutively by one and decreasing v 2 corres-

pondingly by two, the energy matrix takes on "tridiagonal" form:

:

E_ W 2 0

o W3W2 E 2

O

0 W 3 E 3

0 0 W4

0

• ,J • • w • • 0

0 0

W_ 0

m °4

° W
• n

W n "•E n

(A-4)

The v I and v 2 values may be set up in this order in terms of

_, n, and a running index, k :

Vl = k - 1

v 2 = 2(n - k) +

k = 0, i, 2,...n (A-5)

O

This index is shown in table AI. The E k in equation (A-4) are thus

the unperturbed energies calculated from equation (A-2), and the W k

are the coupling terms calculated from equation (A-3), with the k

subscripts determining the v I and v 2 quantum numbers. Diagon-

alization of this matrix which yields the correct energy eigenvalues

for the polyad characterized by v 3, _, and n, is carried out by

the QL algorithm (ref. 22), using the subroutine TQL2, which is

available in the CDC math library.

Frequency and Cross-section

The selection rules for the Raman scattering transitions are

determined by the symmetry of the polarizability operator and the

fact that we are interested in the 1300 cm -I region which corresponds
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to transitions, Av I = 1 or Av 2 = 2, for the unperturbed levels.

With the Fermi resonance the v I and v 2 quantum numbers are no

longer valid, and each state in the polyad becomes a mixture of

all the unperturbed states in the polyad. Thus, if one state in

a polyad can undergo a transition to a state in a second polyad,

all the states in the first polyad can undergo a transition to

each of the states in the second. Since Q1 and Q_ are both

totally symmetric, symmetry requires that Ai = Av 3 = 0 for the

transitions. It can be seen from table Al_that all the transitions

for which Av I = i, Av 2 = 0, and Av 2 = 2, Av I = 0 for the unperturbed

states are contained in, the conditions An = i, AZ = 0. Hence the

selection rules for the perturbed states are:

and

AZ = Av 3 = 0

An = 1 .

The transition frequencies are determined simply by subtracting

the energy of the initial state from that of the final state. The

expression for the transition cross-section is obtained from equa-

tion (A-l), using

n

E oU. = U. C,.
l _=_ ] 31

3 "

(A-6)

O

where the uj are the unperturbed wave functions and cji,
.th

j = l...n, is the i eigenvector of the matrix in equation

(A-4). The relevant terms in the expansion<of the polariz-.

abiiity operator _ are

_2(_ 2
^ 30_ Q1 + Q2
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where _ represents the trace of the polarizability tensor as
defined before, equation (19) in main text. Representing the u.3
by (v_, v_), since it is understood that the _ and v 3 quantum

numbers of the initial and final states are equal, we have

n n-1

<Um{_{ui> = _
k=l j=l

Ckm c31.. <( vk, vk)2I_Î (v3, v3)>

n n-i

= kE _ cj <(k - 1=i j=l Ckm i
2[n- k] + i) (A-7)

× I _ Q1 + _Q2/° Q I (J - i, 2[n- 1- j] + Z>
o

where we now express the v I and v 2 quantum numbers in terms of

the running index defined in equation (A-5), bearing in mind that the

degree of the polyad to which the initial state belongs is n - i.

The sums in equation (A-7) may be separated into two _ypes of terms

according to the integrals over the normal coordinates in the unper-

turbed wave functions. We have (refs. 24, 25) _

_) _-) _ h(vl + I)<vx + lIelv1>-  x
o o

= ° /vl + i (A-8)

where <el> ° is the integral evaluated for v I = 0, and

2
<V 2 + 21Q 2 v2> = __2___] h Q(v2 + 2)2

_Q2] O 16_2D2

<_2>° _(v2 + 2)2 _ %2
2

(A-9)
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where <_2>° is the integral evaluated for v2 = _ = 0. It can be

seen that the first type of term occurs for j = k - 1 in equation

(A-7) and the second type for j = k. Accordingly, equation (A-7)

reduces to

n

<Uml_lui> = k=2_ Ckm Ck-l,i <k - 1 I_I)Oi_ QII k - 2>

n-i

+E
k=l

_2_h Q2212( n _ 1- k) + Z>

Ckm Cki<2(n - k) + il Q[]o

where the u°'s are now represented by only one quantum number--

that which is different for the two states--v I for the terms in

the first sum,- v 2 for those in the second. The sums over k are

altered due to the fact that the sum over j goes from 1 to n - I;

thus, there is no j = k term for k = n, and no j =_k - 1 term for

k = I. Replacing the dummy index k by k + 1 in the first term,

we see that it is given by equation (A-8) with v I = k - i. The

second term is given by equation (A-9) _ with v 2 + 2 = 2(n - k) + Z.

Thus we have

n-i

<Uml_lui> = <_i>° k=l_ Cki [ ck+l'm /_

<c_2> °

+ Ckm
<_i> °

_(n - k)(n - k + _,)] .

(A-IO)

This quantity is then squared and multiplied by the appropriate

factors according to equation (A-l) in order to give the cross-

section for the transition.
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Rotational Structure

Maes has shown that the Fermi coupling term has significant

J dependence for rotational levels with J > 30 (ref. 21). These
levels will have large populations at the temperatures considered

in combustion systems. He has determined the functional form of

this dependence to be

Q[(v 2 + 2)2 _ Z2]v 1
@J(J + i) 2 (A-II)

This term is accordingly added to the Wk in equation (A-4), as
given by equation_i(A_3) ; when the rotational structure is con-

sidered. The eigenvalues and eigenvectors of equation (A-4) will
£hen:bedifferent for each J value.

The rotational energies are given by equation (8) in the main

text, except that now the Bv values msut be averaged over the wave
function for the perturbed states:

n
J J O

= _ (Ckv) 2 Bk (A-12)Bv k=f

where the J dependence of the eigenvectors and, hence, of the

perturbed B v values is now reflected.

The rotational selection rules for the trace scattering are

given by AJ = 0; hence,kthe rotational frequencies are given by

J J J

= (Bm - Bi) J(J + I)_j
(A-13)

where i and m -represent the vibrational quantum numbers of the

initial and final states as before.

The J dependence of the rotation-vibration cross-sections

derives from the J dependence of the rotational energies and
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hence, of the rotational Boltzmann factor_ and the J dependence

of the eigenvectors as reflected in the transition polarizability

given by equation (A-10). There is no rotational line strength,

Sjj, for the trace scattering.

DATA AND RESULTS

The parameters used in the calculations are those determined

by Suzuki (ref. 18) (set v) and are given_in table A2. They were

obtained by a simultaneous fit of the parameters indicated to 33
vibrational band origins and 31 rotational:constant differences,

(Bv - Bo) , observed from infrared spectra. The ground state
rotational constant, B = .39021 cm, was that used in reference i,

o

first obtained by Courtoy (ref. 7)_ and verified by a more accurate

measurement (ref. 17).

The comparison of those energy levels obtained by the programs

described above, those observed from infrared spectra, and those cal-

culated by Suzuki is shown in table A3. It can be: seen that the

agreement is reasonable. Further, it can be seen that the agree-

ment is remarkably good between the calculated energies and those

observed energies to which the parameters were not fitted (those

for which there are no entries in column 2).

In addition to the parameters listed in table A3, the polar-

izability ratio, <_2_°/<_i> °, and the value, <_i> °, in equation

(A-10) are needed in order to calculate<the spectrum. The value of

the polarizability ratio was determined from the measurement of

the ratio of the Raman intensity of the two fundamental bands

carried out by Howard-Lock and Stoicheff (ref. 25). The ratio

was obtained using equation (i) of that reference, but using the

energy parameters of Suzuki rather than those of Courtoy as did

Howard-Lock et al.

The value of <_i> ° was determined from the absolute cross-

section measurement of Penney et al. (ref. 12) using the equation

49



Table A2. Energy parameters of CO2, cm-1 (Suzuki, ref. 18).

' ' Jl

60.
l

X,

1

1

1

X12

X13

X23

g22

k122

i= 1
, , , i • ,

1337.55

-2.94

.001232

.3583

i= 2

667.365

i.i0

-.000737

.4975

i= 3

2361.62

-12.47

.003058

.2808

-3.64

-19.66

-12.37

-.88

74.47

1.9657 x 10 -4

5O



-ITable A3. Calculated and observed energy levels for CO2, cm

Observed

667.38 a

1285.41 a

1335.13 a

1338.19 a

1932.47 a

2003.28

2076.86 a

2349.16 b

2584.9 b

2672.8 b

2760.75 c

2797.19 c

3004.08 c

3241.5 b

3339.25 c

3341.80

3502.0 b

3612.84 a

3714.78 a

4122.7 c

4247.71 a

4390.63 a

4853.63

4888.00 a

Calculated

(Suzuki, ref. 18)

667.58

1285.60

1335.51

1338.03

1932.80

2003.88

2076.66

2349.16

3342.08

3612.89

3714.66

4247.97

4390.68

4853.56

4888.55

Calculated

(present work)

667.59

1285.66

1335.61

1338.08

1932.91

2004.08

2076.76

2349.15

2585.74

2672.98

2760.74

2796.84

3004.37

3241.71

3339.73

3342.33

3500.29

3612.94

3714.70

4122.85

4248.06

4390.77

4853.67

4888.69

(cont'd.)
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Table A3. Calculated and observed energy levels
for CO2, cm-I (concluded).

Observed

4977.81 d

5061.78 a

5099.61 d

5316.09 d

5960.08 d

6075.93 d

6227.88 d

6347.81 d

6503.05 d

6688.54 d

6863.91 d

6972.49 d

7024.03 d

7204.22 d

7602.85 d

Calculated
(Suzuki, ref. 18)

4977.92

5062.07

5099.64

5316.18

5959.42

6075.52

6227.76

6348.25

6503.12

6687.57

6863.77

6972.70

7024.50

7204.01

7603.12

Calculated
(present work)

4977.75

5062.21

5099.69

5316.21

5959.49

6075.69

6227.86

6348.35

6503.30

6687.59

6863.94

6972.63

7024.68

7204.23

7603.11

a Reference 17.

b Reference 14.

c Reference 5 as quoted in reference 7.

d Reference 7.
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[<V= 0 2 <(_2

_ 3 (2_R) 4 n (<_i> O) i +
_zz 3- 40 T=298 <_I>O/

v=0

where p is the depolarization rato and nT=298 is the relative

population of the ground state at room temperature. All values

used in the equation were those of Penney et al. except for the

polarizability ratio, which was determined as described above.

It was assumed that the absolute cross-section measurement was

over a frequency region including both the fundamental bands.

The values determined were

<_ 2> °
.126663 ,

<_i >° = 1.2215 x i0 26 cm 3 .

The spectra with and without rotational structure are shown in

figures A1 and A2,:respectively:. The instrument parameters and

number density, which determine only the scale of the spectrum

and not its relative shape, are the same as those used in the

main text. The remaining%input data are given in table A4. It

can be seen that explicit calculation_of the rotational strmcture

makes a substantial difference in the spectrum.

Figure A3 shows the:experimental C02 spectrum taken by Lapp at

1565°K (ref. 19). It can be seen that the calculated vibration-

rotation spectrum is in good agreement with this spectrum.
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Table A4. Spectral input data for figures 1 and 2.

Fig. 1

Fig. 2

_1/2

0.5 cm -I

3.0 cm -i

Slit

3 cm -I

1 cm -i

Temp

1500°K

1565°K

vl(max)

4

4

v 2 (max)

i0

i0

v3(max)

2

J (max)

144

%n

oh



Figure A3.

>-

oo
Z
W

z

W

I0

_]
w 0

519

(0330)--,-(1330)+(0530)

(0220)-,.(1220)+(o420)

(011 0)-.-(1110)+(031 O)

(00 ° 0)-_(10°0)+(02°0)

\1,
521 523

WAVELENGTH(NM)

(00°0)-,.(10°0)+(02°o)

(01_o)---(ll Jo)+(03_o)

(02z0)--(I 2z0)+(0420)

(0330)---(1330)+(053o)

525

Experimental CO 2 Stokes vibrational Raman spectrum for CO 2 seeded into a

stoichiometric H-air flame at about 1565°K, and at a partial pressure of

about 1/3 atm. The data were obtained through use of a l.lw, 488 nm

argon ion laser source and a 3/4-meter double monochromator with a tri-

angular spectral slit function full width-half maximum value of 0.163 nm.

The notation for the indicated transitions, (Vl, v2, Z, v3) , corresponds

to the three fundamental vibrational quantum numbers and to the vibra-

tional angular momentum Z of the _2-bending mode.
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